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Deregulation and epigenetic modification of
BCL2-family genes cause resistance to venetoclax in
hematologic malignancies
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KEY PO INT S

•Venetoclax resistance is
mediated by
methylation and
silencing of PUMA.

• Treatment algorithms
should consider the
PUMA, MCL1, and BAX
status.
4-m
The BCL2 inhibitor venetoclax has been approved to treat different hematological
malignancies. Because there is no common genetic alteration causing resistance to
venetoclax in chronic lymphocytic leukemia (CLL) and B-cell lymphoma, we asked if
epigenetic events might be involved in venetoclax resistance. Therefore, we employed
whole-exome sequencing, methylated DNA immunoprecipitation sequencing, and
genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 screening to investigate venetoclax resistance in aggressive
lymphoma and high-risk CLL patients. We identified a regulatory CpG island within the
PUMA promoter that is methylated upon venetoclax treatment, mediating PUMA
downregulation on transcript and protein level. PUMA expression and sensitivity toward
ain.pdf by guest on 12 January 2024
venetoclax can be restored by inhibition of methyltransferases. We can demonstrate that loss of PUMA results in
metabolic reprogramming with higher oxidative phosphorylation and adenosine triphosphate production, resem-
bling the metabolic phenotype that is seen upon venetoclax resistance. Although PUMA loss is specific for acquired
venetoclax resistance but not for acquired MCL1 resistance and is not seen in CLL patients after chemotherapy-
resistance, BAX is essential for sensitivity toward both venetoclax and MCL1 inhibition. As we found loss of BAX
in Richter’s syndrome patients after venetoclax failure, we defined BAX-mediated apoptosis to be critical for drug
resistance but not for disease progression of CLL into aggressive diffuse large B-cell lymphoma in vivo. A compound
screen revealed TRAIL-mediated apoptosis as a target to overcome BAX deficiency. Furthermore, antibody or CAR
T cells eliminated venetoclax resistant lymphoma cells, paving a clinically applicable way to overcome venetoclax
resistance.
Introduction
Because the recent approval of venetoclax (VEN) for treatment of
patientswith chronic lymphocytic leukemia (CLL) andacutemyeloid
leukemia, the number of patients with VEN resistance is increasing,
demanding in-depth analysis of resistance mechanisms.1-7 The
B-cell lymphoma 2 (BCL2) protein family, consisting of pro- and
antiapoptotic proteins regulatingmitochondrial apoptosis, plays an
important role in resistance toward VEN. Acquired mutations in
BCL2 associated protein (BAX) and BCL2 were found in hemato-
poietic cell lines with acquired resistance toward BH3 mimetics.8

Whereas proapoptotic BAX is a mediator of apoptosis, leading to
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permeabilization of the mitochondrial outer membrane upon
induction of apoptosis, antiapoptotic BCL2 sequesters proapo-
ptotic BIM. Upon binding of VEN, BIM is released and can induce
apoptosis. Interestingly, mutations in BAX can also occur in the
myeloid compartment of VEN-treated CLL patients and are asso-
ciated with clonal hematopoiesis, indicating lineage-specific
adaptation to VEN.9 Moreover, recurrent mutations in BCL2
(G101V) occur in patients on a subclonal level, leading to resistance
due to decreased affinity of BCL2 for VEN.10 Functionally relevant
mutations also occur in the proximity of G101V (eg, D103 and
F104).11,12 Recurrent mutations/deletions in the cell cycle regula-
tors BTG1 and CDKN2A contribute to resistance particularly in
CLL, where resistance occurs earlier and is associated with a more
aggressive phenotype.13,14 Beside mutations, especially upregu-
lated MCL1 due to amplification of chromosome 1 (amp[1q])
confers resistance toward VEN.15-19 MCL1, an antiapoptotic pro-
tein, can be targeted pharmacologically. Similar to BCL2, MCL1
interacts with proapoptotic proteins like BAX or BAK to block their
apoptotic function, an interaction that can be disturbed by pro-
apoptotic BH3-only proteins like PUMA or NOXA.20

Although genetic reasons for VEN resistance have been
explored in the last years, epigenetic causes regulating gene
expression are poorly understood. We aim to understand the
genetic and epigenetic mechanisms of VEN resistance in high-
risk CLL and various B-cell non-Hodgkin lymphoma (B-NHL)
models.
e-pdf/140/20/2113/2054601/blood_bld-2021-014304-m
ain.pdf by guest on 12 January 2024
Methods
Patient sampling
The material of 6 CLL patients from the M13 982 trial were
investigated as reported earlier.13 T-cell prolymphocytic leu-
kemia (T-PLL) patients were diagnosed according to World
Health Organization criteria. Samples were obtained from
patients under institutional review board–approved protocols
following written informed consent. All patient samples were
collected according to the Declaration of Helsinki, and collec-
tion and use of patient material was approved by the ethics
committee of the University Hospital of Cologne (EudraCT-Nr.:
#2008-001421-34 and AZ11-319).

Experimental mice
The generation of the single alleles for Cd19Cre, Eμ-TCL1tg,
Baxfl/wt, and Baxfl/fl have been described before.21-23 The sex of
the examined mice was balanced. Animals were housed in a
specific pathogen-free facility, and animal breeding and
experiments were approved by the local animal care commit-
tee and the relevant authorities (Landesamt für Natur, Umwelt
und Verbraucherschutz Nordrhein-Westfalen, 81-02.04.2019.
A009).

Cell lines
B-cell lymphoma cell lines derived from diffuse large B-cell
lymphoma (DLBCL), acute lymphoblastic leukemia, follicular
lymphoma, CLL, and unspecified B-cell lymphoma were used.
Detailed information is given in the supplemental data
(supplemental Table 1; supplemental Materials and methods,
available on the Blood website).
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Generation of VEN- and S63845-resistant cell lines
VEN and S63845 resistance was established by long-term
exposure to VEN and S63845, respectively. The initial dose
was 1 nM for VEN and 0.15 μM for S63845. As soon as the
treated cells displayed viability and growth rate similar to the
parental lines, the drug dose was doubled until the final dose of
8 μM VEN or S63845 was reached. Forty-eight hours before
experiments were performed, cell lines were transferred to
VEN-/S63845-free medium.

Western blot and immunodetection, lentivirus production and
transduction, RNA isolation, reverse transcription, real-time poly-
merase chain reaction, and cell-death assays were done as pre-
viously described.24,25 Details are given in supplemental Methods.

CRISPR/Cas9 screening and data analysis
Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) screen was per-
formed in the murine activated B-cell diffuse large B-cell lym-
phoma cell line BSQ12.4 as published.26 Experimental details
are given in supplemental Methods.

Compounds
S63845 was purchased from APExBIO. Tumor necrosis factor–
related apoptosis-inducing ligand was purchased from Enzo
Life Sciences. All other compounds (supplemental Table 2)
were purchased from Selleck Chemicals.

WES and analysis
Whole-exome sequencing (WES) of genomic DNA from VEN-/
S63845-sensitive and -resistant B-cell lymphoma cell lines was
performed as reported earlier.13 Details on DNA extraction are
given in supplemental Methods.

The WES data were deposited to https://dataview.ncbi.nlm.nih.
gov/object/PRJNA716141?reviewer=amsdmumopsfn00r1smcc0
hnbqg.

MeDIP-seq and analysis
Genome-wide methylation analysis was performed using
methylated DNA immunoprecipitation (MeDIP-seq)27 of 9 cell
line pairs: DOHH-2, DB, KARPAS-422, P30-OH-KUBO, WSU-
NHL, HBL-1, 697, and OCI-LY-19.

Raw Illumina 450k files were downloaded from the Gene
Expression Omnibus (supplemental Table 3), and β values were
computed with the R/bioconductor package Minfi (minfi,
RRID:SCR_012830).28 Please refer to supplemental Methods for
details.

Pyrosequencing assay
Targeted methylation analysis was performed using bisulfite
conversion and pyrosequencing. Converted DNA was amplified
with the Pyromark PCR Kit (Qiagen).

Pyrosequencing was performed on a PSQHS96A (Qiagen) with
Pyromark Gold Q96 reagents (Qiagen), and methylation per-
centages were calculated using the PSQHS96A 1.2 software.
For details on preparation of DNA and sequences of used oli-
gos, please refer to supplemental Methods.
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Metabolic flux analysis
Seahorse XFe96 Analyzer (Seahorse Bioscience, Agilent) was
used to assess oxygen consumption rate (OCR) in the described
cell lines following manufacturer instructions. For details, please
refer to supplemental Methods. The Seahorse XF Cell Mito
Stress Test Report Generator (Seahorse Bioscience, Agilent)
was used to analyze the above-mentioned parameters.

Immunohistochemistry
Three micromolars of formalin-fixed, paraffin-embedded sec-
tions were immunostained for BAX (anti-human BAX clone
D2E11, Cell Signaling), pretreated as indicated by the manu-
facturer using a Laboratory Vision Autostainer 480S (Thermo
Fisher Scientific), and counterstained with hematoxylin.

Bispecific antibodies against CD3:CD19
Peripheral blood mononuclear cells (PBMCs) from healthy
donors were incubated with cell lines at a tumor:effector ratio of
10:1 after stimulation with anti-CD3 antibody (200 ng/mL) and
anti-CD28 antibody (50 ng/mL) at a density of 1 × 106 cells per
mL for 72 hours.

Cells were stained with antibodies against CD4 and CD8 (both
Miltenyi Biotech) and annexin-V (Immunotools) and analyzed by
flow cytometry.

CAR T-cell experiments
VEN-sensitive and -resistant Nalm6 cells as well as OSU-CLL
wild-type and BAX−/− clones were incubated with different
proportions of anti-CD19 chimeric antigen receptor (CAR) T
cells. CAR T-cell preparation was performed as described
earlier.29 The retroviral expression cassettes for the chimeric
antigen receptors used in this study were generated by
replacing the single-chain variable fragment (scFv) binding
domain of the anti-CEA CAR BW431/26scFv-Fc-CD3ζ (439),30

with the FMC63 scFv31 to obtain the CD19-specific CAR.
CD3+ T cells were isolated by magnetic-activated cell sorting to
purities >98% using human anti-CD3 MicroBeads (Miltenyi
Biotec). CD3+ T cells were retrovirally transduced to express the
CAR. Afterward cell viability was determined by an XTT assay.

Statistical analyses
GraphPad Prism 7 (GraphPad Prism, RRID:SCR_002798) was
used for data analyses. Data were presented as mean ± stan-
dard deviation (SD). Comparison between groups was per-
formed using 2-tailed Student t test or 1-way analysis of
variance; P < .05 was considered as a significant difference.

Results
VEN-resistant cell lines and patient samples
feature distinct regulation of PUMA, BAX,
and MCL1
Ten cell lines from different leukemia/lymphoma entities with
acquired resistance toward VEN were generated. Resistance
was validated by toxicity assays and analysis of PARP cleavage
and was stable even after 3 months without VEN treatment
(supplemental Figure 1C). We identified MCL1, BAX, and
PUMA (BBC3) protein level recurrently affected in cell lines with
acquired resistance toward VEN. MCL1 was significantly upre-
gulated in 7 of 10 resistant cell lines. Our data reveal a
EPIGENETIC MECHANISMS OF VENETOCLAX RESISTANCE
significant reduction or loss of BAX in 6 of 10 resistant cell lines
and, unexpectedly, a significantly decreased expression of
PUMA in 8 of 10 cell lines (Figure 1A; supplemental Figure 1A-C).
MCL1 upregulation as well as downregulation of BAX and PUMA
could also be detected in primary CLL patient samples at RNA
level (Figure 1B). We performed a genome-wide CRISPR/Cas9
knockout screen26 with and without low-dose VEN as selective
pressure in another activated B-cell diffuse large B-cell lym-
phoma mouse model.32,33 guide RNAs against Bax and Bbc3
were strongly selected in the presence of VEN (mean fold
change, 56 and 3.84, respectively). In contrast, loss of the guide
RNA against Mcl1 was detrimental for the cells after VEN treat-
ment (mean fold change, 0.04, Figure 1C).

Because BAX plays an important role as a direct executioner of
apoptosis, we analyzed samples from 6 VEN (single agent)-
treated high-risk CLL patients.13,34 At the time of VEN resis-
tance, 3 patients (numbers 1, 3, and 6) had a regular CLL
morphology, whereas 2 (numbers 2 and 4) showed morpho-
logical signs of Richter’s transformation. One patient (number 5)
showed a high Ki67 index (~50%) without signs of trans-
formation. Three patients (numbers 2, 4, and 5) did not show
measurable BAX expression (Figure 1B), supporting our finding
that VEN resistance is frequently associated with loss of BAX in
cell lines and in primary patient samples. We could not detect
mutations in the BAX gene in these 6 CLL samples by WES.13

We assessed expression of MCL1, BCL2, BCL-xL, BAX, and
PUMA in primary material of 2 T-PLL patients before and after
VEN failure. T-PLL, a high-risk hematologic malignancy, is sus-
ceptible to VEN, with encouraging clinical data.35,36 Decreased
PUMA levels were the most remarkable changes detected at
the time of clinically acquired VEN resistance (Figure 1D).
Resistance toward S63845 is associated with
BAX mutations but independent of PUMA
Because acquired resistance toward MCL1 inhibitors has not
been studied so far, we compared acquired resistance toward
VEN with acquired resistance against the MCL1 inhibitor
S63845 in 5 B-NHL cell lines (Figure 1A,E-F; supplemental
Figures 1A-B and 2A-C). S63845-resistant cells showed an
MCL1 upregulation and a reduction of BAX (Figure 1E-F;
supplemental Figure 2C). WES of S63845- and VEN-resistant
lines revealed genetic alterations in the coding part of BAX. In
2 cell lines (Nalm6, WSU-NHL), we observed an enrichment of a
preexisting frameshift deletion in BAX (p.M38fs) upon VEN
resistance. In 2 further cell lines (HBL-1, P30-OH-KUBO), we
observed de novo mutations/deletions of BAX (Figure 1A;
supplemental Table 4). For S63845-resistant cells, the same
frameshift deletion in BAX p.M38fs was either enriched (WSU-
NHL) or developed de novo (P30-OH-KUBO) (supplemental
Figure 2D; supplemental Table 5). Similar to solid can-
cers,37,38 B-NHL cell lines with micro satellite instability
(MSI) showed BAX M38fs frameshift deletions upon resistance
(cancer.sanger.ac.uk/cell lines; cosmic.org) (Figure 1A;
supplemental Figure 1E). Expression of BAK1, which mediates
apoptosis induced by MCL1 inhibitors, was significantly
reduced in P30-OH-KUBO, DOHH2, and WSU-NHL cell lines.
PUMA expression remained unaltered in 4 of 5 MCL1i-resistant
cell lines (Figure 1E-F; supplemental Figure 2C), indicating that
PUMA downregulation is specific for VEN resistance but less for
S63845 resistance.
17 NOVEMBER 2022 | VOLUME 140, NUMBER 20 2115
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BBC3/PUMA expression in VEN-resistant
lymphoma cell lines and primary CLL cells is
mediated by DNA methylation
PUMA expression was the most striking difference between
VEN- and S63845-resistant cell lines (Figure 1A,E; supplemental
Figures 1A-B and 2D). A knockout for PUMA in KARPAS-422
cells and in mouse embryonic fibroblasts with Puma−/−

showed significantly reduced sensitivity toward VEN
(supplemental Figure 3D-G). Because PUMA mRNA expression
was reduced (supplemental Figure 3A), MeDIP-seq was per-
formed. A principal component analysis showed no global
alterations of methylation upon VEN exposure (supplemental
Figure 3B). However, the promoter region of BBC3 of the cell
lines with initially high sensitivity toward VEN contained a
region with an increase in DNA methylation after acquired
resistance (Figure 2A; log2 fold change, 0.99; P < .001). For
specific analyses of CpG methylation in the PUMA promoter
region, we examined 3 CpGs by pyrosequencing (Figure 2B).
One CpG (chr19: 47 231 698) revealed an increased methyl-
ation level after VEN treatment in 4 of 7 cell lines by 10.8% to
39.8% (mean, 21.8%; SD, 9%; P30-OH-KUBO, DOHH-2, 697,
DB) (Figure 2C). All 4 cell lines with increased methylation level
showed a decrease of PUMA on transcript and protein level
upon VEN treatment (Figure 1A; supplemental Figures 1A-B
and 3A). In contrast to VEN-resistant cell lines, changes in BBC3
promoter methylation could not be detected in cell lines with
acquired resistance toward S63845 (supplemental Figure 2E). In
primary patient samples before and after VEN treatment, we
observed an increase in DNA methylation by 10% to 30%
(Figure 2D) in 5 of 6 cases, suggesting that also in the clinical
setting PUMA promoter methylation occurs at resistance.

In a CpG-free luciferase reporter assay, luciferase activity
revealed that methylation of this region results in lower promoter
activity, explaining reduction of transcript level (Figure 2E). For
validation, treatment with demethylating 5-azacytidine (5′AZA)
resulted in demethylation of the region in 3 independent cell
lines (Figure 2F). PUMA protein expression of resistant cell lines
after 5′AZA treatment increased, indicating that local methyla-
tion level is causal for the aberrant expression (Figure 2G;
supplemental Figure 3C). Accordingly, VEN-resistant cell lines
were resensitized toward VEN upon 5′AZA treatment (Figure 2H).

Loss of PUMA results in metabolic reprogramming
of lymphoma cells
Previous findings showed that mitochondrial metabolism is
increased in VEN-resistant cells.19 We asked if disbalancing pro-
and antiapoptotic molecules by PUMA knockout is sufficient to
rewire metabolic properties of lymphoma cells. In accordance
with our assumption, respiration and glucose metabolism was
Figure 1. Downregulation of BAX and PUMA and upregulation of MCL-1 in vitro and
lymphoma cell lines: WSU-NHL, OCI-LY-19, DOHH-2, DB, KARPAS-422, HBL-1, 697, P30-O
proteins (supplemental Figure 1A-B). Mean ± SD of at least 3 independent experiments.
test. Lower: results from WES. Genomic alterations are annotated according to the color
Scale bar, 100 μm. Pictures 1 through 5: lymph node sections posttherapy; picture 6: bone
and BAX mRNA expression level for CLL patients 1 and 2 pre- (blue) and post (red)-VEN
RNAs from CRISPR/Cas9-Screen in murine lymphoma cell line after 28 days with/without
patients before and after VEN resistance. (E) Immunoblot for MCL1, BAK1, PUMA, and
Densitometric analyses of immunoblots against MCL1, BAK1, PUMA, and BAX normalized
.05; **P < .01; ***P < .001; ****P < .001, compared with parental (blue) cells, Student t t
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increased in both PUMA-depleted cell lines (Karpas-422PUMA−/−

and OSUPUMA−/− cells) (Figure 2J-K; supplemental Figure 3F,H),
resembling the changes upon VEN resistance (supplemental
Figure 4A-B). This was also confirmed in murine settings upon
knockout of Puma in mouse embryonic fibroblasts (supplemental
Figure 4C). The increase in basal and maximal respiration level
and oxidative phosphorylation–dependent ATP production was
similar in cell lines with PUMA knockout and acquired VEN
resistance (Figure 2I-K; supplemental Figure 4A). Moreover,
these cell lines exhibited a higher level of basal glycolysis, as
assessed by ECARs, and increased glycolytic capacity upon
injection of the ATPase inhibitor oligomycin (supplemental
Figure 4B). Absence of glucose from the medium did not
display significant differences (supplemental Figure 4A). Upon
VEN acute injection in KARPAS-422 and DOHH-2 cell lines
during metabolic assays (supplemental Figure 4D-K), our data
revealed an immediate yet transitory increase in ECAR upon VEN
injection (supplemental Figure 4G,K). Although confirming that
the drug treatment strongly decreased OCR in sensitive cells
(supplemental Figure 4D-E,H-I), the absence of glucose from the
medium decreased maximal respiration even in the resistant
settings (supplemental Figure 4D,F,H,J).

Furthermore, cell cycle analysis of PUMA-depleted cell lines
was performed. No changes could be detected between
PUMA-depleted cells and control cells (supplemental
Figure 3J-K).

Overall, our data demonstrate that VEN resistance leads to an
increased cellular metabolism and show that these metabolic
changes can be mediated by loss of PUMA.
VEN resistance can be overcome by MCL1
inhibition in BAX-proficient cell lines
Because MCL1 was upregulated in all resistant cell lines, we
analyzed whether MCL1 inhibitors like S63845 can overcome
VEN resistance. Biomarkers predicting treatment efficacy
toward MCL1 inhibitors are urgently needed.39,40 Five out of
9 VEN-resistant cell lines were equally or even significantly
more susceptible toward MCL1 inhibition than their parental
lines (Figure 3A), with 4 of them at low nanomolar IC50s
(supplemental Figure 5A). However, the remaining 4 VEN-
resistant cell lines were as resistant or even more resistant
toward MCL1 inhibition (supplemental Figure 5A). These
results indicate that VEN resistance can be overcome by MCL1
inhibition in some instances. As most cell lines showed
significantly increased MCL1 protein, this did not differentiate
the MCL1 inhibitor responders. In contrast to this, low or absent
BAX expression predicts insensitivity toward S63845
(Figure 3A).
in vivo. (A) Top: IC50 values for VEN in 10 sensitive (blue) vs VEN-resistant (red) B-cell
H-KUBO, Nalm6, and OSU. Middle: densitometric analyses of immunoblots of BCL2
*P < .05; **P < .01; ***P < .001, compared with parental (VEN naïve) cells, Students t
panel below the image. (B) Immunohistochemistry of BAX in 6 primary CLL samples.
marrow post–VEN therapy. RelativeMCL1 (left panel) and BBC3 (PUMA) (right panel)
therapy determined by bulk 3′RNA-seq. (C) Results for Bax, Bbc3, and Mcl1 guide
VEN (10 nM). (D) Immunoblot for MCL1, BCL-xL, BCL2, PUMA, and BAX in 2 T-PLL
BAX in 3 sensitive and S63845-resistant B-cell lymphoma cell lines, respectively. (F)
to β-actin. Data illustrated as mean ± SD of at least 3 independent experiments. *P <
est. 3′RNA-seq, 3’RNA-sequencing; IC50, median inhibition concentration.
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Loss of BAX mediates drug resistance but does not
alter aggressiveness and kinetics of CLL
development in a mouse model
To define the role of BAX deficiency in CLL, we employed 3
different systems. First, we generated OSU cell lines with BAX
knockout and tested for susceptibility toward VEN. Loss of BAX
induced resistance toward VEN in OSU cells (Figure 3B-C).
Next, we investigated cells of the CLL patient with mutated BAX
and TP53 alleles. These primary CLL cells were treated with
VEN for 24 hours and surviving cells were isolated and sub-
jected to next generation sequencing. Although the mean
variant allelic frequency for BAX (c.361del) remained at 9.3% in
untreated cells, it increased to 14% in the surviving fraction after
VEN exposure (P = .0061), indicating that cells carrying the BAX
mutation were enriched during VEN treatment. At the same
time, the variant allele frequency of TP53 mutations remained
stable (Figure 3D; supplemental Figure 5B).

As we could show that BAX loss was found in CLL patients with
more aggressive course of disease after VEN resistance
(Figure 1B), we generated a compound-mutant mouse to define
the role of Bax for CLL development and drug resistance. Baxfl

(www.jax.org) mice were crossbred with Cd19Cre/wt and
EμTCL1tg/wt mice to achieve a conditional Bax knockout in
malignant B cells (supplemental Figure 5C). We purified CLL-
like cells from spleens of diseased animals and treated these
cells ex vivo with VEN, S63845, and fludarabine. Bax loss
resulted in severe drug crossresistance not only against VEN but
also against MCL1 inhibition and fludarabine (Figure 3E). Surpris-
ingly, the reduction of Bax in EμTCL1tg/wt;Cd19Cre+/wt;Baxfl/wt or
EμTCL1tg/wt;Cd19Cre+/wt;Baxfl/fl mice did not result in altered
kinetics of the disease (Figure 3I). In contrast to our findings in
TP53-deleted mice, we did not find signs of transformation,
because all cells exhibited the canonical IgM+/Cd19+/Cd5+

immunophenotype (Figure 3F).41 Spleen sizes, blood cell
parameters, and amount of malignant B cells within the spleen
were similar, only the CLL cell count in the peripheral blood was
higher (Figure 3G-H; supplemental Figure 5D-F). In contrast to
loss of Tp53 or constitutively active Akt signaling, Bax loss is no
driver of transformation in EμTCL1 mice.41,42 However, in
contrast to Tp53 mutations, Bax is crucial for susceptibility
toward VEN (Figure 3C-D). In addition, in TCL1 wild-type mice,
we did not find any signs of B-cell expansion or unphysiological
B-cell subsets in Bax knockouts until the age of 83 weeks
(supplemental Figure 5G-J).

Cells with acquired VEN resistance are susceptible
toward extrinsic apoptosis
To analyze crossresistance of VEN, we performed a compound
screen with 45 compounds in Nalm6 VEN-sensitive or -resistant
Figure 2. Effect of VEN on the expression of BBC3 in B-cell lymphoma cell lines and
drawing of BBC3 promoter region. For the Dual-Glo Luciferase Assay (Figure 2E), a 91
followed by the luciferase reporter. (C-D) Methylation changes detected by pyrosequenci
resistance (D). (E) Dual-Glo Luciferase Assay analysis of methylated (meth) and unmet
****P < .0001, compared with unmethylated reporter construct, Student t test. (F) Methy
lymphoma cell lines, determined by pyrosequencing. (G) Immunoblot for PUMA in 3 VEN
for 5 passages. (H) Viability assay of 3 VEN-treated cell lines (24 hours, 1 μM) after incub
determined by flow cytometry. *P < .05; **P < .01; ***P < .001, compared with untreated (-
respiration and glycolysis in PUMA-KO KARPAS-422 (J) and OSU (K) cells upon injectio
max.) and are representative of 3 to 6 independent experiments. Paired 2-tailed Stude
w/o, without.

EPIGENETIC MECHANISMS OF VENETOCLAX RESISTANCE
cells (Figure 4A; supplemental Table 2). Nalm6 cells with VEN
resistance showed crossresistance toward DNA-damaging drugs
and different tyrosine kinase inhibitors (Figure 4A-B). Results
were similar to compound screens performed in VEN-resistant
OSU and DB cells, respectively (supplemental Figure 6A).

Our screening identified TRAIL, which induces extrinsic
apoptosis, as a promising candidate to induce BAX-independent
cell death (Figure 4A-F). We determined the activity of soluble
TRAIL in all resistant cell lines (supplemental Figure 6B-F). TRAIL
was efficient in cell lines with significantly decreased BAX levels,
suggesting that TRAIL kills the respective cells independently of
BAX (supplemental Figure 6B). To confirm this observation,
TRAIL-mediated cell death was measured in the BAX-knockout
OSU cells. Data demonstrate an equal sensitivity and caspase-8
activation independent of BAX expression (supplemental
Figure 6E-F). Hence, TRAIL seems a promising salvage strategy
to overcome VEN resistance. Similar to VEN-resistant cell lines,
3 of 5 S63845-resistant cell lines were sensitive toward TRAIL
independent of their BAX level (supplemental Figure 6G).

The compound screen revealed another substance with high
sensitivity in VEN-resistant cell lines, YM155, a BIRC3/survivin
inhibitor. YM155 diminishes BAX-induced apoptosis and
induces a downregulation of MCL1.43 In line with this, BAX-
proficient cell lines exhibited susceptibility toward YM155,
whereas IC50s in BAX-deficient cell lines were significantly
higher (supplemental Figure 6H-I). To rule out that defective
MCL1 downregulation was the reason for inefficiency in BAX-
deficient cell lines, we investigated the expression of MCL1
after YM155 treatment. In fact, MCL1 was also efficiently
downregulated independent of caspases in P30-OH-KUBO
cells (supplemental Figure 6J). These data support our prior
finding that loss of BAX can hardly be overcome by MCL1
inhibition.

Because death receptors and caspase-8 are also involved in
necroptosis, we asked whether VEN resistance affects this type
of programmed cell death. We used tumor necrosis factor α
(TNFα) or TRAIL in combination with inhibitors of caspase-8
(emricasan) and cellular inhibitors of apoptosis (cIAPs; bir-
inapant) to induce necroptosis.44 As proof of concept, we
inhibited receptor-interacting protein kinase 1 (GSK’963), a
mediator of necroptosis.45 VEN-resistant Nalm6 cells are sen-
sitive toward TRAIL- and TNFα-mediated apoptosis but not
necroptosis. The same observation was made in DOHH-2 cell
line (supplemental Figure 7).

In a next step, we investigated if CAR T cells and CD3:CD19
bispecific antibodies, both promising agents to target (refractory)
leukemia and lymphoma, can overcome VEN resistance. T cells
primary CLL cells. (A) Schematic representation of MeDip-seq results. (B) Schematic
7 bp big region containing the CpGs of interest was cloned in a CpG-free vector,
ng for the CpG of interest in cell lines (C) and primary CLL cells before and after VEN
hylated (unmeth) versions of the promoter region of BBC3. Mean ± SD, N = 10.
lation of BBC3 promoter region in 5′AZA-treated (5 passages) VEN-resistant B-cell
-sensitive and -resistant B-cell lymphoma lines treated with or without 5′AZA (0.1 μM)
ation with 5′AZA (5 passages). Mean ± SD of 3 independent experiments, viability
5-AZA) cells, Student t test. (I) Schematic analysis of OCR analysis. (J-K) Mitochondrial
n of the Seahorse Mito Stress test drugs. Data are shown as floating bars (min. to
nt t test: *P < .05; **P < .01. ECAR, extracellular acidification rate; KO, knockout;
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 h
from healthy donors were costimulated with CD3/CD28 and
then incubated with and without the CD3:CD19 bispecific
antibody blinatumomab and the target cells. In both VEN-
resistant cell lines Nalm6, DOHH-2, 697, and the OSU-BAX
knockout cells, highly effective and specific killing could
be observed. (Figure 5A-B). There was no difference in the
efficacy in killing of sensitive and resistant or BAX-proficient
and -deficient cells (Figure 5A-B).

In a second approach, we generated CAR T cells against CD19
and incubated them with Nalm6 (sensitive/resistant) and OSU
cells (BAX wild-type and knockout) (Figure 5C). Again, we
observed equal frequencies in cell death in both sensitive and
resistant cell lines.

Together, our data highlight that immunotherapeutic approaches
inducing extrinsic apoptosis can efficiently target VEN-resistant
cells with BAX deficiency.
ttp://ashpublications.org/blood/article-pdf/140/20/2113/2054601/blood_bld-2021-014304-m
ain.pdf by guest on 12 Janu
Discussion
Although VEN is increasingly used for the therapy of hemato-
logic malignancies, the frequency of resistance to VEN is also
increasing. The underlying mechanisms for VEN resistance are
not completely understood, and strategies to overcome this
resistance are needed. Here, we investigated mechanisms of
resistance against VEN in high-risk CLL, T-PLL, and human and
murine B-cell lymphoma in more detail.

Resistance toward VEN was mediated by methylation of the
PUMA promoter and subsequent downregulation of PUMA in
cell lines from different lymphoma and leukemia entities.
Aberrant methylation patterns were also observed in relapsed
CLL samples with 2 to 6 prior treatments that were almost
unmethylated at this particular CpG before VEN treatment.
Interestingly, PUMA regulation is specific for VEN and not due
to acquired resistance toward MCL1i or chemotherapy. Indeed,
the relevance of PUMA loss is supported by findings in a mouse
model for Burkitt’s lymphoma, where Puma deletion resulted
in accelerated lymphomagenesis mediated by reduced
apoptosis.46,47 Moreover, it was shown that substances (eg,
statins) that are able to increase PUMA expression lead to
higher susceptibility toward VEN.48,49 5′AZA treatment reverted
methylation of the identified CpG with upregulation of the
PUMA protein and resensitized resistant cells toward VEN. In
line with our data, a recently published manuscript by Fresquet
Figure 3. MCL1 inhibition (S63845) cannot eliminate BAX-deficient VEN-resistant cel
(red) determined by flow cytometry after 48 hours. N ≥3. Lower part: heat map with relativ
OSU cells by immunoblot. N = 3. (C) Sensitivity of OSU KO cells toward VEN determined
Allelic fraction of TP53 (c.515T>A) and BAX (c.361del) before and after VEN treatment (24 h
(E) Viability of purified, malignant splenic B cells of Eμ-TCL1tg/wt; Cd19Cre+/wt; Baxwt/wt (blue
mice treated with VEN, S63845 (24 hours), or fludarabine (48 hours), determined
(F) Immunophenotyping of splenocytes of a 50-week-old Eμ-TCL1tg; Cd19Cre+/wt; Baxfl/fl

FSC-height dot plot. Analysis for Cd45, Cd19, IgM, and IgD expression. (G) Spleen we
Cd19Cre+/wt; Baxfl/wt (red; n = 6), and Eμ-TCL1tg; Cd19Cre+/wt; Baxfl/fl (purple; n = 5)
(H) Determination of the amount of Cd19+/B220dim/neg-positive cells in the blood (left pan
panel; 44 weeks old animals; n = 4, n = 5, and n = 4, respectively) of Eμ-TCL1tg/wt; Cd
Cd19Cre+/wt; Baxfl/fl (purple) mice. **P < .01; ***P < .001; ****P < .0001, compared wit
Eμ-TCL1tg/wt; Cd19Cre+/wt; Baxwt/wt (blue; 48 weeks; n = 14), Eμ-TCL1tg/wt; Cd19Cre+/wt; B
n = 6) mice. Survival of Eμ-TCL1tg/wt; Cd19Cre+/wt; Baxfl/wt (red), and Eμ-TCL1tg; Cd19Cre
FS, forward scatter integral; FSC, forward scatter; IgM, immunoglobulin M; INT, integral;
not significant; SSC, side scatter integral.

EPIGENETIC MECHANISMS OF VENETOCLAX RESISTANCE
et al suggests a mechanistic rationale for synergistic effects of
hypomethylating agents and VEN.50

We identified increased respiration and glucose metabolism in
3 different models with PUMA loss. This finding stands in
contrast to a recent report where high-level of PUMA was
shown to enhance glycolysis by suppressing pyruvate-driven
oxidative phosphorylation in hepato-cellular carcinoma.51 The
discrepancy may be explained by different roles of PUMA in
hematological malignancies,46 where it is often deleted, and
hepatocellular carcinoma, where PUMA shows robust expres-
sion.51,52 Our data implies that the role of PUMA for treatment
resistance is far more complex as it results from specific treat-
ment and is independent of the TP53 status of the cells. Indeed,
PUMA is able to induce apoptosis inBid−/−, Bim−/−, Bid−/−;Bim−/−,
Bax−/−, and Bak−/− lines with equal efficacy.53

We and others reported earlier that MCL1 upregulation is a
common observation in VEN-resistant settings.18,19 Although
we identified altered phospho-p38 signaling as a reason for
MCL1 upregulation, others reported cytogenetic aberrations
like amplification 1q18,19,54. In acute myeloid leukemia, sus-
tained MAPK/extracellular signal-regulated kinase signaling led
to increased levels of MCL1 and confers resistance to BCL2
inhibitors.55,56 In follicular lymphoma, increased MAPK/extra-
cellular signal-regulated kinase signaling led to resistance
without alterations in MCL1 expression.57 BAX expression has
not been investigated in CLL under VEN treatment so far. VEN-
resistant cell lines show equal or significantly higher sensitivity
toward S63845 compared with the corresponding original cell
lines, supporting the strategy to overcome VEN resistance by
MCL1 as a mono substance or in addition to VEN.58 A common
feature of the cell lines that responded worse to S63845 was a
very low or absent BAX level. We conclude that BAX is a central
mediator of resistance toward BCL2 and MCL1 inhibition. We
identified enrichment of preexisting or de novo aberrations in
BAX in B-cell lymphoma cell lines and a BAX mutation in 1 CLL
patient. These observations are consistent with the occurrence
of deleterious mutations BAX in a cohort of patients with pro-
gressive CLL from early-phase VEN monotherapy trials as well
as other single reports (in both CLL and mantle cell lymphoma)
in the literature.50,59,60

In our cell lines, the MSI status correlated with M38fs frameshift
deletion after VEN resistance. Therefore, the correlation of
MSI and VEN response in DLBCL is worth to be determined
in trials as up to 10% of DLBCLs might harbor MSIlow and up to
ls. (A) Top: mean IC50 for S63845 of 9 VEN-sensitive (blue) and VEN-resistant cell lines
e BAX and MCL1 protein level in VEN-resistant cell lines. (B) Validation of BAX KO in
by flow cytometry after VEN treatment for 48 hours. Mean ± SD of 4 experiments. (D)
ours, 5 nM) in a high-risk CLL patient. Mean plus SD, 3 technical replicates; P = .0061
), Eμ-TCL1tg/wt; Cd19Cre+/wt; Baxfl/wt (red) and Eμ-TCL1tg; Cd19Cre+/wt; Baxfl/fl (purple)
by MTT assays. Mean ± SD of 2 experiments; 3 technical replicates each.
mouse. Gating strategy of viable, single cells on FSC/SSC dot plot and FSC-area/
ight and length of Eμ-TCL1tg/wt; Cd19Cre+/wt; Baxwt/wt (blue; n = 6), Eμ-TCL1tg/wt;
mice. Mean ± SD. *P < .05, compared with Bax wild-type mice, Student t test.
el; 32-week-old animals; n = 5, n = 8, and n = 2, respectively) and splenocytes (right
19Cre+/wt; Baxwt/wt (blue), Eμ-TCL1tg/wt; Cd19Cre+/wt; Baxfl/wt (red), and Eμ-TCL1tg;
h Bax wild-type mice, Student t test. (I) Kaplan-Meier curves of overall survival of
axfl/wt (red; 56 weeks; n = 7), and Eμ-TCL1tg; Cd19Cre+/wt; Baxfl/fl (purple; 59.5 weeks;
+/wt; Baxfl/fl (purple) compared with the respective controls (log-rank test; P = .0914).
KO, knockout; MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid; ns,
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Figure 4. VEN resistance can by overcome by activation of the extrinsic apoptotic pathway. (A) Heat map showing IC50 values of sensitive and VEN-resistant Nalm6
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identified for Nalm6 and corresponding Nalm6-VEN–resistant cells. (C) Cell death assay of sensitive and VEN-resistant Nalm6 for TRAIL (48 hours) determined by flow
cytometry. Mean ± SD. N = 3. (D) Results from Caspase-Glo 8 Luminescent Assay in sensitive and VEN-resistant Nalm6 cells after treatment with TRAIL (50 ng/mL, 4 hours).
N = 1. (E) Viability of sensitive and VEN-resistant Nalm6 cells after incubation with caspase-8 inhibitor Z-IETD-FMK (25 μM, 6 hours) and/or TRAIL treatment (200 ng/mL, 4 hours)
determined by flow cytometry. N = 2. (F) Immunoblots for (t)BID, caspase-3, caspase-8, and PARP isoforms in Z-IETD-FMK and/or TRAIL treated cells. N = 2. DMSO, dimethyl
sulfoxide.
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3% MSIhigh.61 Furthermore, the role of BAX for DLBCL in
molecular subgroups and for novel treatment options62-64

needs to be investigated.

Because we found downregulation of BAX in VEN-resistant CLL
patients with Richteŕs transformation or more aggressive course
of diseases, we introduced a CLL mouse model with B-cell–
specific Bax loss. Intriguingly, our data suggest that Bax-
associated apoptosis resistance is a major cause for therapy
resistance but not for disease progression or transformation,
which stands in contrast to the roles of Tp53 or constitutive
active Akt signaling in TCL1 mice.41,42 Because we did not find
an expansion of B cells in Bax knockout (TCL1 wild-type) mice
until the age of 83 weeks, oncogenic stimulation or genomic
instability seem to be necessary for development of CLL and
other B-cell lymphoma. Our findings on the role of BAX are
supported by data from the myeloid compartment, where BAX
mutated clonal hematopoiesis occurred after VEN treatment
but was not related to therapy-related myeloid neoplasms.9

Furthermore, we showed that VEN-resistant cells are prone to
TRAIL- and TNFα-induced apoptosis but not necroptosis.
However, resistance mechanisms toward substances used for
EPIGENETIC MECHANISMS OF VENETOCLAX RESISTANCE
treatment upon VEN resistance need to be studied in the
future. Ultimately, our data provide evidence that immuno-
therapies are suitable strategies to overcome VEN resis-
tance.65,66 Indeed, recently presented clinical data showed that
VEN- and ibrutinib-resistant CLL patients were successfully
treated with CAR T cells.67,68

In summary, we identified a novel resistance mechanism for VEN
that is induced by epigenetic silencing of PUMA in relapsed/
refractory high-risk CLL and high-grade lymphoma. These find-
ings suggest the use of MCL1 targeting agents in patients with
functional BAX.Moreover, agents that induce extrinsic apoptosis
such as TRAIL, BiTE, or CAR T–redirected T cells overcome BAX
deficiency in VEN-resistant lymphoid malignancies.
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